

Cambridge IGCSE[™](9–1)

CENTRE
NUMBER

CANDIDATE NAME

CANDIDATE	
NUMBER	

CHEMISTRY 0971/32

Paper 3 Theory (Core)

October/November 2024

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has 20 pages. Any blank pages are indicated.

1 (a) Fig. 1.1 shows part of the Periodic Table.

I	Ш							Ш	IV	V	VI	VII	VIII
				Н									Не
										N			
Na								Αl			S		Ar
K	Ca						Zn					Br	
												Ι	
	Ва					Au							

2

Fig. 1.1

Answer the following questions using only the elements in Fig. 1.1. Each symbol of the element may be used once, more than once or not at all.

Give the symbol of the element that:

(i)	is 78% of clean, dry air	
		[1]
(ii)	forms an ion with a charge of 3+	
		[1]
(iii)	has an atom with only five occupied electron shells	
		[1]
(iv)	forms an ion that gives a light green colour in a flame test	
		[1]
(v)	is used in food containers because of its resistance to corrosion	
		[1]
(vi)	is the metal with the lowest reactivity.	
		[1]

(i)	State the meaning of the term monatomic.	
		[1]
(ii)	Explain in terms of electronic configuration why helium is unreactive.	
		[1]
	[Tota	l: 8]

[2]

[2]

- 2 (a) Hydrogen chloride has a simple molecular structure.
 - i) State **two** physical properties of a compound with a simple molecular structure.

1 -

(ii) Hydrogen chloride is a molecule with a covalent bond.

Complete this sentence about a covalent bond.

(iii) Complete Fig. 2.1 to show the dot-and-cross diagram for a molecule of hydrogen chloride. Show outer shell electrons only.

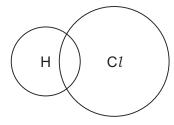


Fig. 2.1

(b) Zinc chloride has a giant ionic structure of positive and negative ions.

State the general name given to any negative ion.

.....[1]

- (c) Diamond is used for jewellery.
 - (i) State one other use of diamond.

.....[1]

(ii) Choose the correct statement that describes the structure and bonding in diamond.

5

Tick (✓) one box.

simple covalent molecule		
giant covalent		
simple ionic		
giant ionic		

[1]

[Total: 8]

3 (a) The list shows some substances present in water from natural sources.

dissolved oxygen calcium compounds plastics harmful microbes

	State which one of these substances provides essential minerals for aquatic life.	
		[1
(b)	Explain why phosphates present in polluted water are harmful to aquatic life.	
		[1
(c)	Table 3.1 shows the masses of ions, in mg, present in a 1000 cm ³ sample of polluted water	r

Table 3.1

	Г	I
name of ion	formula of ion	mass of ion in 1000 cm ³ of polluted water/mg
bromide	Br⁻	0.3
calcium	Ca ²⁺	2.5
chloride	C <i>l</i> −	3.5
hydrogencarbonate	HCO ₃ -	10.0
magnesium	Mg ²⁺	0.8
mercury	Hg ²⁺	0.1
	NO ₃ -	0.4
phosphate	PO ₄ ³⁻	2.0
potassium	K ⁺	5.9
silicate	SiO ₃ ²⁻	4.0
sodium	Na⁺	12.2
sulfate	SO ₄ ²⁻	0.5

Answer these questions using the information from Table 3.1.

(i)	Name the negative ion present in the highest concentration.	
		[1]
(ii)	State the name of the NO ₃ ⁻ ion.	
		[1]

(iii) Calculate the mass of phosphate ions present in 200 cm³ of polluted water.

mass	=	 mg	1

(d) Fig. 3.1 shows some of the stages in the purification of drinking water.

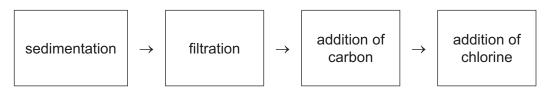


Fig. 3.1

(i)	State the	purpose	of sedimentation	1
-----	-----------	---------	------------------	---

	L	J
State why chlorine is added to drinking water.		

- (e) Describe how to test for the purity of water using boiling point.

......[2

Complete the symbol equation for the reaction of disulfur dichloride, S_2Cl_2 , with water. $S_2Cl_2 +H_2O \rightarrowHCl + H_2SO_3 + H_2S$

[Total: 11]

4 (a) Fig. 4.1 shows the displayed formula of compound **A**.

Deduce the molecular formula of compound A.

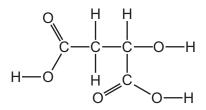


Fig. 4.1

- (i) On Fig 4.1 draw a circle around the alcohol functional group. [1]
- r
- (b) Compound A reacts with ethanol to produce a compound with the molecular formula $C_8H_{14}O_5$.

 Complete Table 4.1 to calculate the relative molecular mass of $C_8H_{14}O_5$.

Table 4.1

type of atom	number of atoms	relative atomic mass	
carbon	8	12	8 × 12 = 96
hydrogen		1	
oxygen		16	

(c) Complete the word equation for the complete combustion of ethanol.

(d) Table 4.2 shows the names, formulae and boiling points of ethene, propene, butene and pentene.

9

Table 4.2

name	formula	boiling point /°C
ethene	C ₂ H ₄	-104
propene	C ₃ H ₆	-47
butene	C ₄ H ₈	-6
pentene	C ₅ H ₁₀	+30

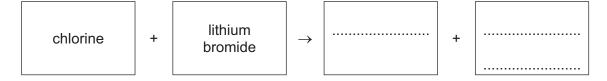
Use the information in Table 4.2 to answer these questions.

(i)	Name the homologous series that includes ethene, propene, butene and pentene.
	[1]
(ii)	Deduce the general formula of this homologous series.
	[1]
(iii)	State the trend in the boiling point of this homologous series as the number of carbon atoms increases.
	[1]
e) Eth	ene is manufactured by cracking.
(i)	Describe the manufacture of ethene by cracking.
	[3]
(ii)	Give a reason for cracking hydrocarbons.
	[1]

5 (a) Table 5.1 shows some properties of five halogens.

Table 5.1

halogen	melting point in °C	boiling point in °C	density in liquid state in g/cm ³
fluorine	-220	-188	
chlorine	-101	-35	1.56
bromine	-7	+59	3.12
iodine	+114		3.96
astatine	+302	+337	6.40


Use the information in Table 5.1 to predict:

- (i) the boiling point of iodine[1]
- (ii) the density of liquid fluorine[1]

reason

[2]

- (b) Aqueous chlorine reacts with aqueous lithium bromide.
 - (i) Complete the word equation for this reaction.

(ii) Explain why aqueous iodine does **not** react with aqueous lithium bromide.

.....[1]

(iii) Describe a test for chlorine.

test

[2]

(c) Fluorine reacts with ammonia to produce hydrogen fluoride and nitrogen.

Complete the symbol equation for this reaction.

$$....F2 + 2NH3 \rightarrowHF + N2$$
 [2]

[Total: 11]

[3]

- **6** This question is about metals.
 - (a) Many metals have high melting points and boiling points.

State three **other** typical physical properties of metals.

2	
4	

3[3]

(b) (i) Complete Table 6.1 to show the number of electrons, neutrons and protons in the sodium atom and silver ion shown.

Table 6.1

	number of electrons	number of neutrons	number of protons
²³ Na	11		
¹⁰⁹ Ag ⁺		62	

(ii) Write the electronic configuration of the sodium atom.

......[1]

(c) Silver is a transition element. Sodium is in Group I of the Periodic Table.

State **one** difference in the physical properties of silver and sodium.

.....[1]

(d) Table 6.2 shows the observations when four different metals are heated in oxygen.

Table 6.2

13

metal	observations when heated in oxygen
cerium burns rapidly and forms an oxide	
copper	forms an oxide layer very slowly and does not burn
lanthanum	forms an oxide layer rapidly and does not burn
silver	does not form an oxide layer and does not burn

Put the four metals in order of their reactivity. Put the least reactive metal first.

least reactive —		-	most reactive	
	,			[2]

(e) Copper(II) oxide is reduced by carbon monoxide.

CuO + CO
$$\rightarrow$$
 Cu + CO $_2$

Explain how this equation shows that copper(II) oxide is reduced.

.....[1

[Total: 11]

[2]

- 7 This question is about acids, bases and salts.
 - (a) Crystals of zinc sulfate are made by warming excess solid zinc oxide with dilute sulfuric acid.

$$ZnO(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + H_2O(l)$$

(i) State the meaning of the state symbol (aq).

.....[1]

(ii) State the method used to separate the excess solid zinc oxide from the reaction mixture.

.....[1]

- (b) Crystals of sodium nitrate can be made by neutralising an acid with an alkali.
 - (i) Name the acid and the alkali used.

acid

(ii) Complete the equation for all neutralisation reactions.

$$H^+ + \dots \rightarrow \dots$$
 [2]

(iii) Neutralisation reactions are exothermic.

Define the term exothermic.

.....[1]

(iv) Fig. 7.1 shows the reaction pathway diagram for an exothermic reaction.

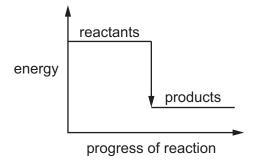


Fig. 7.1

Explain how Fig. 7.1 shows that the reaction is exothermic.

......[1

(c) Methyl orange is an acid-base indicator.

State the colour of methyl orange at pH2 and at pH12.

colour at pH2

colour at pH12

15

[Total: 10]

8 (a) A student investigates the reaction of small pieces of calcium carbonate with excess dilute hydrochloric acid of three different concentrations.

The time taken for each reaction to finish is recorded.

The three concentrations of acid are:

- 0.5 mol/dm³
- 1.0 mol/dm³
- 2.0 mol/dm³.

All other conditions stay the same.

Table 8.1 shows the time taken for each reaction to finish.

Table 8.1

concentration of dilute hydrochloric acid in mol/dm³	time taken for the reaction to finish in s
	32
	64
	16

(i)	Complete Table 8.1 by writing the concentrations in the first column.	[1]
(ii)	Describe the effect on the time taken for the reaction to finish when the reaction is carrout at a lower temperature.	ied
	All other conditions stay the same.	
		[1]
(iii)	Describe the effect on the time taken for the reaction to finish when powde calcium carbonate is used instead of small pieces of calcium carbonate.	red
	All other conditions stay the same.	

(b)	Molten	calcium	chloride	is	electrolysed	using	inert	electrodes
-----	--------	---------	----------	----	--------------	-------	-------	------------

	(i)	Name the products	at the positive	e and negative elec	trodes.	
		product at the positi	ve electrode .			
		product at the negat	ive electrode			[2]
	(ii)	Choose from the list			n inert electrode.	[2]
		graphite	iodine	magnesium	phosphorus	[1]
(c)	Car	bon dioxide is a gas	at room temp	erature.		
	Des	scribe the motion and	separation o	f the particles in ca	rbon dioxide gas.	
	mo	tion				
	sep	aration				

[Total: 8]

BLANK PAGE

18

* 000080000019 *

19

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

Group

										II										
	2 He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	첫	krypton 84	54	Xe	xenon 131	98	R	radon	118	Og	oganesson _
₹			6	ட	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	Н	iodine 127	82	¥	astatine -	117	<u>⊼</u>	tennessine -
>			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъо	polonium –	116	^	livermorium -
>			7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209	115	Mc	moscovium -
≥			9	O	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium
≡			2	В	boron 11	13	Ν	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204	113	R	nihonium
									30	Zu	zinc 65	48	В	cadmium 112	80	Нg	mercury 201	112	ပ်	copernicium
									29	Cn	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium
									28	z	nickel 59	46	Pd	palladium 106	78	₫	platinum 195	110	Ds	damstadtium -
									27	ပိ	cobalt 59	45	牊	rhodium 103	77	'n	iridium 192	109	₩	meitnerium -
	- I	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	9/	Os	osmium 190	108	Нs	hassium
			•						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
				pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
		Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	Та	tantalum 181	105	Сb	dubnium
				ato	rela				22	j	ttanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	짪	rutherfordium -
						-			21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89-103	actinoids	
=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium -
_			3	:=	lithium 7	1	Na	sodium 23	19	エ	potassium 39	37	Вb	rubidium 85	55	Cs	caesium 133	87	ᆂ	francium -

20

	57	28	59	09	61	62	63	64	65
lanthanoids	Га	Ce	Ŗ	PZ	Pm	Sm	En	В	Tp
	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium
	139	140	141	144	ı	150	761	15/	601
	68	06	91	92	93	94	92	96	26
actinoids	Ac	드	Ра	\supset	ď	Pn	Am	Cm	益
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium
	ı	232	231	238	ı	ı	ı	ı	ı

Lu lutetium 175

Yb Yb 173 173 No

Tm thulium 169 101 Md

Er erbium 167 100 Fm fermium

67 Ho holmium 165 99 ES

66
Dy
dysprosium
163
98
Cf
californium

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).